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 35 
Abstract 36 

Using new satellite observations and atmospheric inverse modeling, we report 37 
methane emissions from the Permian Basin, which is among the world’s most 38 
prolific oil-producing regions, and accounts for >30% of total U.S. oil production. 39 
Based on satellite measurements from May 2018 to March 2019, Permian methane 40 
emissions from oil and natural gas production are estimated to be 2.7±0.5 Tg a-1, 41 
representing the largest methane flux ever reported from a U.S. oil/gas producing 42 



Science Advances                                               Manuscript Template                                                                           Page 2 
of 39 
  

region and are >2 times higher than bottom-up inventory-based estimates. This 43 
magnitude of emissions is 3.7% of the gross gas extracted in the Permian, i.e. ~60% 44 
higher than the national average leakage rate. The high methane leakage rate is likely 45 
contributed by extensive venting and flaring resulting from insufficient infrastructure 46 
to process and transport natural gas. This work demonstrates a high-resolution 47 
satellite data-based atmospheric inversion framework, providing a robust top-down 48 
analytical tool for quantifying and evaluating sub-regional methane emissions. 49 
 50 
 51 

 52 
MAIN TEXT 53 
Introduction 54 

Methane is a potent greenhouse gas with a relatively short average atmospheric 55 
residence time of about a decade, and is also a precursor of tropospheric ozone (1). 56 
The emission-based radiative forcing for methane (including effects on tropospheric 57 
ozone and stratospheric water vapor) is 0.97 W m-2 since preindustrial times, which is 58 
about 60% of that for CO2 (2). Roughly a third of the contemporary anthropogenic 59 
methane emissions come from the fossil fuel energy sector worldwide (oil, natural 60 
gas, and coal) (~ 100–180 Tg a-1) (3,4,5). Curbing anthropogenic methane emissions, 61 
including those from the oil/gas sector, is considered an effective strategy to slow the 62 
rate of near-term climate warming (1). However, the rapid increase in oil and natural 63 
gas (O/G) production in the U.S. since around 2005, driven primarily by hydraulic 64 
fracturing and horizontal drilling, has led to major concerns about increasing 65 
methane emissions and adverse climate impacts (6). By upscaling data collected from 66 
field measurements in some of the largest O/G production basins in the U.S., Alvarez 67 
et al. (7) estimated 13 Tg annual methane emissions from the national O/G supply 68 
chain for 2015, which is 60% higher than the official estimates by the U.S. 69 
Environmental Protection Agency (EPA) (8). The largest discrepancy was found in 70 
the O/G production segment where the estimate by Alvarez et al. (7) (7.6 Tg a-1) was 71 
more than two times that by EPA which relies on inventory-based estimates (8) (3.5 72 
Tg a-1).  73 

While field measurements provide in-depth information about a particular site or 74 
area, it is often challenging to expand the measurement capacity to observe a diverse 75 
set of targets distributed globally over longer periods of time. Additional challenges 76 
exist for areas that are difficult to access for technical or proprietary reasons. On the 77 
other hand, global satellite observations of column atmospheric methane offer a 78 
unique vantage point to identify emission hotspots and quantify regional emissions 79 
(9). Using data from SCanning Imaging Absorption spectroMeter for Atmospheric 80 
CHartographY (SCIAMACHY) satellite observations averaged between 2003-2009, 81 
Kort et al. (10) found large anomalous methane levels from the Four Corners region 82 
in the U.S., with total methane emissions associated with natural gas, coal and 83 
coalbed sources estimated as 0.59±0.08 Tg a-1. While the SCIAMACHY data were 84 
fairly limited in spatial resolution (30 km × 60 km) and measurement precision (30 85 
parts per billion in volume or ppbv) (9), it was the first time satellite observations 86 
were used to quantify a dense O/G related methane emission hotspot. This finding 87 
also led to several dedicated airborne studies to better understand methane sources in 88 
the region (11, 12), which reported methane fluxes comparable to the satellite-based 89 
estimate (10).  90 
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Here, we demonstrate and exploit the capability of a recent space-borne sensor, the 91 
Tropospheric Monitoring Instrument (TROPOMI), to map atmospheric methane 92 
enhancements in the U.S. and quantify emissions from the Permian Basin (Figure 1), 93 
which has become the world’s most prolific oil producing regions in recent years due 94 
to advances in drilling technologies. Located in New Mexico and Texas in a region 95 
of ~400 km × 400 km, Permian is currently the largest oil producing basin in the U.S. 96 
In 2018, the Permian Basin produced 5.5×105 m3 (or 3.5 million barrels) of crude oil 97 
and 3.2×108 m3 (or 11 billion cubic feet) of natural gas every day (~ 30% and ~10% 98 
of the U.S. national totals, respectively), which was 4 and 2.5 times their 99 
corresponding levels in 2007 (around the time of SCIAMACHY observations) 100 
(Figure 2) (13). While the surging production in the Permian Basin and its 101 
significance in the U.S. oil boom during the last decade have been widely covered in 102 
mass media (14), the scale of associated methane emissions from this critical O/G 103 
basin are unknown, despite reports of increased flaring and venting activity (15). 104 

Using 11 months of recent data acquired by TROPOMI during 2018–2019, we focus 105 
on the distinct methane concentration anomaly over the Permian Basin, and quantify 106 
the associated methane emissions with a state-of-the-art atmospheric inverse 107 
modeling framework. TROPOMI was launched in October 2017 onboard the 108 
European Space Agency’s Sentinel-5P satellite, and provides column atmospheric 109 
methane measurements with higher spatial resolution (7 km × 7 km at nadir) and 110 
precision (0.6%) than was previously available (16), providing near daily global 111 
coverage with its large 2,600 km wide swath (17). Our integrated satellite-based 112 
approach provides new insights into the dynamic landscape of O/G-related methane 113 
emissions in the U.S., and should pave the way forward towards routine 114 
quantification, monitoring, and evaluation of methane emissions from source regions 115 
distributed globally.  116 
 117 

 118 
Results  119 

Satellite observations of the Permian Methane Anomaly 120 

Figure 1A shows a map of column-averaged dry-air methane mixing ratio over the 121 
conterminous U.S., retrieved from TROPOMI measurements, with correction for the 122 
topography effect (denoted as XCH$% ; see Methods). The data are averaged from May 123 
2018 to March 2019. Significant enhancements of XCH$%  relative to the surrounding 124 
background, up to ~ 30 ppbv, are found over the Permian Basin, indicating strong 125 
methane emissions. Other notable enhancements are observed in California’s central 126 
valley, coastal Southeast, and the Mississippi River Valley, likely associated with 127 
anthropogenic (agriculture, dairy) and natural (wetland) sources. The elevated 128 
methane levels in central California were also seen earlier in the SCIAMACHY 129 
analysis (10). 130 

The methane enhancements over the Permian Basin show a characteristic two-branch 131 
pattern, which aligns with the two major O/G production sub-basins, the Delaware 132 
basin to the west and the Midland basin to the east (Figure 1B). The enhancement 133 
over the Delaware basin, where extensive new exploitation has taken place during the 134 
last five years (18) (fig. S1), is larger than that over the Midland basin (Figure 1B). 135 
Intensive O/G production activity in these two sub-basins is also captured by satellite 136 
observations of radiant heat from gas flaring (Figure 3A; nighttime observations by 137 
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VIIRS) and NO2 tropospheric column densities (Figure 3B; daytime observations by 138 
TROPOMI). Flaring is a common practice in O/G operations to burn off unwanted or 139 
excess gas, and NO2 is a gaseous pollutant released during gas flaring and other 140 
combustion activities in O/G fields (19, 20). Based on measurements by the VIIRS 141 
instrument onboard the Suomi National Polar-orbiting Partnership satellite, we 142 
estimate an average flaring rate of 5.9±1.2 billion m3 a-1 during the period of this 143 
study, about 4.6% of the gross gas production (see text S1). A fourfold increase in 144 
flaring intensity since 2012, observed by the VIIRS instrument, is indicative of the 145 
rapid growth in O/G production across the Permian Basin (fig. S1). 146 

Methane emission quantification 147 

We quantify the methane emission rate from the Permian Basin and its spatial 148 
distribution with atmospheric inverse modeling, which optimizes spatially-resolved 149 
methane emission rates by drawing information from TROPOMI observations and 150 
the prior emission estimate following the Bayesian rule. The inversion seeks to 151 
optimize monthly methane emission rates resolved at 0.25°× 0.3125° horizontal 152 
resolution in a study domain containing the Permian Basin and the surrounding 153 
region (29°–34° N, 100°–106° W). The solution to the optimization is found 154 
analytically with closed-form characterization of the error statistics (3). An 155 
atmospheric transport model (a nested version of GEOS-Chem over North America 156 
with a 0.25°× 0.3125° horizontal resolution) (21) is used as the forward model to 157 
relate atmospheric methane columns with ground-level emissions in the study 158 
domain and the contributions from outside the domain. The optimization by the 159 
inversion significantly reduces the observation-model mismatch with decreased root-160 
mean-square-error (prior: 23 ppbv; posterior: 14 ppbv) and increased correlation (R; 161 
prior: 0.30; posterior: 0.62) (fig. S2). See Methods for more details about the 162 
configurations of the inverse modeling including error accounting and prior 163 
information.  164 

When aggregating monthly spatially-resolved posterior emissions to the basin-level 165 
annual average, we find a methane emission flux of 2.9±0.5 Tg a-1 from the Permian 166 
Basin (30–34° N, 101–105° W) (Figure 4A; see Methods for the uncertainty 167 
analysis). This estimate is more than a factor of two larger than the bottom-up 168 
estimate based on an extrapolation of EPA greenhouse gas inventory data (EIBU, 1.2 169 
Tg a-1; see Methods) (Figure 4A), suggesting that current methane emissions in the 170 
Permian are underrepresented in national bottom-up emission inventories (22). Our 171 
inversion result is in close agreement with a basin-level estimate based on 172 
extrapolation of limited ground-based site-level measurements in the Permian (EIME, 173 
2.8 Tg a-1) (Figure 4A). It should be noted that these site-level measurements were 174 
primarily conducted in the New Mexico portion of the Permian Basin and covered 175 
only a small fraction of production sites (see Methods and text S2). As a comparison, 176 
we also apply a fast mass balance method following Buchwitz et al. (23) to estimate 177 
basin-level emissions, which yields an annual mean emission rate of 3.2±2.0 Tg a-1 178 
for the Permian Basin. This result is consistent with that derived from a full 179 
atmospheric inversion. Despite the large uncertainty of the mass balance method, this 180 
data-driven approach provides an independent estimate of emissions derived 181 
primarily using TROPOMI data (see text S3 for more discussion). 182 
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Removing the non-O/G sources (0.2 Tg a-1) from the total flux obtained via the 183 
inversion (2.9 Tg a-1), we estimate the methane emissions related to O/G activity to 184 
be 2.7 Tg a-1 in the Permian Basin. Put in the context of national emissions, this value 185 
is approximately one quarter of total emissions from all U.S. oil and gas production 186 
areas in 2015 (10.9 Tg a-1 including emissions from production, gathering, and 187 
processing, which largely occur in the production areas) (7). Our estimated emission 188 
rate for the Permian is significantly higher than those reported in the literature for 189 
other major U.S. O/G producing basins. Table S1 summarizes methane emission 190 
estimates for 11 U.S. basins (7, 24, 25) from previous aircraft-based studies (i.e., 191 
Haynesville (24,26), Barnett (24,27), Northeast Pennsylvania (26,28), Southwest 192 
Pennsylvania (25), San Juan (12), Fayetteville (26,29), Bakken (24,30), Uinta (31), 193 
Weld (32), West Arkoma (26), Eagle Ford (24), and the Denver Basin (24)). Our 194 
estimate for the Permian (2.7 Tg a-1) is about a factor of 4 higher than the largest 195 
methane emissions from these previously-reported O/G basins (i.e., Eagle Ford, 0.73 196 
Tg a-1(24)), and is even comparable to the 11-basin sum (3.7 Tg a-1) (Figure 4A and 197 
table S1). This comparison with recent literature indicates that the Permian Basin is 198 
likely the largest observed methane emitting O/G basin in the U.S. and a significant 199 
contributor to national O/G related emissions. 200 

Distribution of methane emissions 201 

High-resolution observations from TROPOMI enable us to resolve methane 202 
emissions at an unprecedented spatial and temporal resolution, relative to the 203 
previous generation of satellite instruments such as GOSAT and SCIAMACHY (9). 204 
Figure 5 presents the spatial distribution of methane emissions in the Permian Basin 205 
at a ~ quarter degree resolution derived from our atmospheric inversion. Compared to 206 
the prior inventory EIBU, our inversion finds larger methane emissions near the center 207 
of the Delaware and Midland sub-basins. Sensitivity inversions further show that this 208 
spatial pattern is robust against prior emissions of varied magnitudes and 209 
distributions (fig. S3), demonstrating that it is primarily informed by satellite 210 
observations.  211 

The spatial distribution of methane emissions derived from inversion is closely 212 
correlated with that of gross gas production (R=0.78), but to a lesser degree with that 213 
of oil production (R=0.53) and that of the well number density (R=0.31) (fig. S4). 214 
Similarly, when we sum up the O/G-related emissions for two sub-basins, the ratio of 215 
methane emissions between Delaware and Midland (1.7 Tg a-1/1.0 Tg a-1=1.7) is 216 
closest to the ratio of gas production (1.4), compared to that of oil production (1.0) 217 
and well number density (0.7). Because unconventional wells tend to have much 218 
higher production per well than conventional wells (33), the dependence of methane 219 
emissions on gross gas production rather than the well number density suggests that 220 
unconventional wells and infrastructure associated with these wells (e.g., gathering 221 
stations), which have been developed recently, are likely the major methane emitters 222 
in the Permian Basin.  223 

In addition to the spatial distribution, our monthly inversion also provides 224 
information about the temporal variation of methane emissions during the 11 months 225 
of observation (fig. S5). Although the inversion’s ability to resolve the spatial 226 
distribution of emissions varies from month to month because of uneven monthly 227 
sampling of TROPOMI (fig. S5), our inversion ensemble (table S2 and fig. S5) 228 
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generally results in consistent monthly basin-level emission estimates (see also 229 
uncertainty analysis in Methods). Interestingly, we speculate that high emissions in 230 
December 2018 may be related to a very low in-basin gas price towards the end of 231 
2018, resulting from insufficient gas gathering and transmission capacity in the 232 
Permian Basin (33,34). That said, we do not find an apparent increasing trend in 233 
methane emissions, although natural gas production from the Permian Basin 234 
increased steadily by ~20% during the overlapping 11-month period (fig. S6). 235 
Further investigation is required to delineate factors controlling the temporal 236 
variations of O/G-related methane emissions. 237 

Discussion  238 
Using an inverse analysis of TROPOMI satellite observations, we estimate a total 239 
methane flux of 2.9±0.5 Tg a-1 in the Permian Basin, with 2.7 Tg a-1 coming from 240 
O/G-related activity. Methane losses of this magnitude represent a waste of an 241 
important resource; for instance, this is enough natural gas to supply 7 million 242 
households in the state of Texas (35). Moreover, the 2.7 Tg a-1 methane emitted in 243 
Permian results in the same radiative forcing as ~ 260 Tg a-1 CO2 over a 20-year time 244 
horizon (86 Tg CO2 a-1 over a 100-year time horizon) (global warming potential of 96 245 
for 20 years and 32 for 100 years) (7,36), about the same as annual CO2 emissions 246 
from the entire U.S. residential sector (290 Tg CO2 a-1 in 2017) (22).  247 

Our estimate (2.7 Tg a-1) equates to a production-normalized (73 Tg CH4 a-1, derived 248 
from 127 m3 a-1 natural gas production during the study period using 80% methane 249 
content by volume) emission rate (or methane leakage rate) of 3.7±0.7%, which is ~ 250 
60% higher than the national average of 2.3±0.3% (7) (Figure 4B). The leakage rate 251 
is even higher for the rapidly-developing Delaware sub-basin (4.1%). Comparable 252 
high leakage rates have also been reported in other oil production focused basins 253 
such as the Bakken (24) (table S1), but these basins produce much lower natural gas 254 
than the Permian Basin does. Previous studies summarized in table S1 show an 255 
inverse relationship between the basin-level leakage rate and gas production (24); 256 
however, the Permian Basin is clearly an outlier with high oil production, high gas 257 
production and a high leakage rate. 258 

Overall, the high leakage rate in the Permian Basin appears to be associated with 259 
insufficient infrastructure for natural gas gathering, processing, and transportation 260 
(34,37), leading to extensive venting and flaring (Figure 3), which contributes to high 261 
methane emissions. The greater profitability of oil production contributes to a lack of 262 
investment in natural gas takeaway capacity, which in turn has resulted in excessive 263 
supply of associated gas and a very low in-basin gas price in the Permian (34). In 264 
addition, with the rescinding of U.S. federal requirements on gas capture and fugitive 265 
emissions in 2018, current regulations on O/G methane emissions in the Permian 266 
Basin are less stringent at both federal and state levels (see text S4). All these factors 267 
may increase the incentive for operators to vent and flare their product. On the other 268 
hand, the higher-than-average leakage rate in the Permian Basin implies an 269 
opportunity to reduce methane emissions in this rapidly growing oil and gas 270 
producing region, through better design, effective management, regulation, and 271 
infrastructure development. 272 

 273 
 274 
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Methods 275 

TROPOMI methane observations 276 

We use daily column-averaged dry air column methane mixing ratio (XCH4) data 277 
retrieved from TROPOMI measurements (38) between May 2018 and March 2019. 278 
TROPOMI, onboard the polar-orbiting Sentinel-5 Precursor satellite, is a push-broom 279 
imaging spectrometer that provides near-daily global coverage with a swath width of 280 
2600 km and a nadir ground pixel size of 7 × 7 km2 at approximately 13:30 local 281 
overpass time (17). The retrieval algorithm accounts for the “full physics” of the light 282 
path by simultaneously inferring methane concentrations and physical scattering 283 
properties, using the Oxygen A-band in the near-infrared (NIR) and the methane 284 
absorption band in the short-wave infrared (SWIR) (39). Only high-quality XCH4 285 
measurements retrieved under cloud-free conditions are used in this study (as 286 
indicated by the retrieval quality assurance flags in TROPOMI data product). These 287 
measurements are filtered for solar zenith angle (<70°), low viewing zenith angle 288 
(<60°), smooth topography (1-standard deviation of surface elevation <80 m within 289 
5-km radius), and low aerosol load (aerosol optical thickness <0.3 in NIR) (40).  290 

The TROPOMI XCH4 product is further corrected for any known retrieval biases 291 
(40). The errors in the TROPOMI XCH4 measurements have been assessed against 292 
GOSAT XCH4 data (38) and were found to correlate with surface albedo. A global 293 
bias correction linearly dependent on surface albedo was then derived and applied to 294 
the TROPOMI data (40). This bias-corrected TROPOMI XCH4 product is used in 295 
this study. Negligible correlation of errors with other retrieved parameters (e.g., 296 
aerosol optical thickness) were found in the assessment. Validation with independent 297 
ground-based measurements from the Total Column Carbon Observing Network 298 
shows that the bias-corrected TROPOMI XCH4 has a bias of -4.3 ± 7.4 ppbv, 299 
improved upon the uncorrected XCH4 product (-12 ± 11.5 ppbv) (40). Additionally, 300 
we also examine the correlation between bias-corrected XCH4 and other retrieved 301 
parameters for the subset of TROPOMI data over the domain of this study. We find 302 
no correlation with albedo (R2 = 0.00) and a negligible correlation with aerosol 303 
optical thickness (R2= 0.07), supporting that the XCH4 enhancement over the 304 
Permian Basin (Figure 1B) is robust. 305 

Fig. S7A shows the average XCH4 over the conterminous U.S. and the Permian 306 
Basin between May 2018 and March 2019, before the topographical correction. We 307 
derive the elevation corrected methane column (XCH$% ) shown in Figure 1, by 308 
applying a 3rd order polynomial correction fitted over the U.S. domain following 309 
Kort et al. (10). The mass balance method uses the elevation-corrected data (XCH$% ) 310 
for emission quantification, while the inversion method uses XCH4 (bias corrected) 311 
directly obtained from the data product, because the topography effect is taken care 312 
of by the atmospheric transport model.  313 

Atmospheric inverse modeling  314 

We perform an inverse analysis of TROPOMI observations to derive optimized 315 
estimation of monthly methane emissions at 0.25°× 0.3125° horizontal resolution in 316 
the Permian Basin. Quantification of emissions at this combination of relatively high 317 
spatial and temporal resolution, not achievable with previous generations of satellite 318 
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observations such as from GOSAT or SCIAMACHY, is enabled by higher resolution 319 
TROPOMI satellite observations (41). Fig. S7B shows that the Permian Basin is well 320 
sampled by TROPOMI during the study period, likely because of frequent cloud-free 321 
conditions in the region. A total of ~ 200,000 TROPOMI XCH4 retrievals within the 322 
study domain (29°–34°N, 100°–106° W) between May 2018 and March 2019 are 323 
used for the inversion.  324 

Let x be the state vector that we seek to optimize through inversion, including a 325 
gridded ensemble of methane emissions and an additional element representing the 326 
regional model bias in XCH4. The regional model bias term (a monthly scalar 327 
uniform over the inversion domain) is necessary to account for spatially uniform 328 
biases caused by imperfect lateral boundary condition and emission errors outside the 329 
study domain. The inversion solves for an optimal estimate of x by minimizing the 330 
following cost function:  331 

𝐽 𝒙 = 𝒙 − 𝒙* +𝐒*-. 𝒙 − 𝒙/ + 𝒚 − 𝐊𝒙 +𝐒3-. 𝒚 − 𝐊𝒙 1  332 

where TROPOMI XCH4 observations are assembled in y, xA is the prior estimate of 333 
x, SA is the prior error covariance matrix, SO is the observational error covariance 334 
matrix, and K is the Jacobian matrix describing the sensitivity of XCH4 to emissions 335 
and the regional model bias (∂y/∂x).  336 

Minimization of Eq. 1 at  ∇6	𝐽 𝒙 = 𝟎 yields the posterior estimation (𝒙), the 337 
posterior error covariance matrix (𝐒), and the averaging kernel matrix (A): (42) 338 

𝒙 = 𝒙* + 𝐒*𝐊+ 𝐊𝐒*𝐊+ + 𝐒3 -.(𝒚 − 𝐊𝒙/) 2  339 

𝐒 = 𝐊+𝐒3-.𝐊 + 𝐒/-. -. 3  340 

𝐀 = 𝐈? − 𝐒𝐒*-. 4  341 

Here In is an identity matrix where n is the dimension of the state vector x. The trace 342 
of A, often called as the degrees of freedom for signal (DOFS), quantifies the number 343 
of pieces of information constraining the n-dimensional state vector.   344 

To solve for Eq. 2–4, the prior estimate (xA) for gridded methane emissions is 345 
required. Using different sources of information, we create two gridded emission 346 
inventories for the study region: one based on bottom-up information (EIBU) and the 347 
other based on extrapolation of ground-based site-level measurements (EIME) (see 348 
below for descriptions of the inventories). Both emission inventories are time 349 
invariant. We use EIBU as the prior estimate in the base inversion, while we use EIME 350 
in a sensitivity inversion to evaluate the impact of the prior estimate (PI_EIME; see 351 
table S2). We perform further evaluations using prior emissions constructed by 352 
disaggregating the total O/G-related emission flux from EIBU with varied spatial 353 
proxies (i.e. well count, PI_EIwell, natural gas production, PI_EIgas, and oil 354 
production, PI_EIoil) (table S2 and fig. S3). 355 

The difference between the EIBU and EIME (Figure 5A and fig. S3A) measures the 356 
uncertainty of our prior knowledge, we thus specify prior errors (SA) for emissions as 357 
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the absolute difference between EIBU and EIME. We also specify the prior error for 358 
the regional model XCH4 bias as 10 ppbv. To test the sensitivity to prior errors, we 359 
perturb SA in two sensitivity inversions by doubling (PE×2) or halving (PE×0.5) prior 360 
errors (table S2). SO is constructed with the residual error method (43), which results 361 
in an error averaged at ~ 11 ppbv. Both SO and SA are taken to be diagonal matrices. 362 
We also perform a sensitivity inversion to test the impact of error correlations with 363 
off-diagonal terms specified following Cusworth et al. (44) (OE_Cor; see table S2). 364 

A nested version of the GEOS-Chem chemical transport model (12.1.0) is used as the 365 
forward model in the inversion to link XCH4 to surface emissions. To account for the 366 
vertical sensitivity of the satellite instrument, we compute simulated XCH4 by 367 
applying TROPOMI averaging kernels to simulated methane vertical profiles. We 368 
construct the Jacobian matrix K, column by column, with simulations perturbing 369 
each state vector element independently. The simulations are performed over North 370 
America and adjacent oceans driven by GEOS-FP assimilated meteorological data 371 
from the NASA Global Modeling and Assimilation Office (GMAO) on a 0.25°× 372 
0.3125° horizontal grid and 47 vertical layers (~ 30 layers in the troposphere) (21). 373 
The boundary conditions for the nested-grid simulation are from a 4° × 5° global 374 
simulation from May 2018 to March 2019 driven by GEOS-FP meteorological fields. 375 
Note that methane emissions and sinks used in this simulation are optimized with 376 
previous-year (2010-2017) GOSAT satellite data following Maasakkers et al. (3). 377 
Such generated boundary conditions may be biased (i.e., unable to capture the growth 378 
of global methane concentrations; see fig. S9), and we account for it by introducing a 379 
monthly regional model bias term in the inversion. The retrieved regional model 380 
biases may vary with the extent of the inversion domain. To test this sensitivity, we 381 
also perform an inversion with a larger spatial domain (27°–36°N, 98°–108° W) 382 
(Bg_Large; see table S2). 383 

Inversion uncertainty 384 

The posterior error covariance matrix (𝐒, Eq. 2) and averaging kernel matrix (A, Eq. 385 
3) evaluates the uncertainty of an inversion solution given inversion parameters (e.g., 386 
SA, SO, forward model). Fig. S5 shows monthly posterior errors for basin-level 387 
emissions (derived from 𝐒) and corresponding degrees-of-freedom for signal (DOFS, 388 
trace of A) from our base inversion. Overall, the posterior errors for basin-level 389 
emissions are < 5% of the estimated emission flux and the DOFS are between 5 and 390 
30 for the monthly inversion, indicating that the TROPOMI data are able to constrain 391 
basin-level methane emissions and partially resolve the spatial distribution on a 392 
monthly basis. The monthly variations in the posterior error and DOFS are mainly 393 
driven by uneven data coverage from TROPOMI sampling. For example, poor data 394 
coverage in November 2018 results in a large posterior error and a small DOFS (fig. 395 
S5). 396 

We also perform an ensemble of sensitivity inversions by perturbing the 397 
configurations and parameters in the base inversion (table S2), aiming to characterize 398 
the uncertainties resulting from assumptions made in the inversion not captured by 399 
the analytical posterior error. Our results show that all these sensitivity inversions 400 
lead to consistent basin-level emission estimates. Annual mean fluxes from 401 
sensitivity inversions are within 0.5 Tg a-1 of that from our base inversion (table S2), 402 
with general agreement in monthly variations as well (fig. S5). Because the 403 
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uncertainty resulting from sensitivity inversions are significantly larger than that 404 
deduced from posterior error covariance matrix (fig. S5), we report the uncertainty of 405 
our basin-level emission estimate (0.5 Tg a-1) as half of the range from the inversion 406 
ensemble (2.4 Tg a-1 to 3.4 Tg a-1).  407 

Furthermore, to assess the uncertainty due to model transport, we compare hourly 408 
GEOS-FP 10m wind speed against measurements at the Midland Airport (MAF) in 409 
the Permian Basin during the period of May 2018 and March 2019. Airport wind 410 
measurements are not assimilated in the GEOS-FP reanalysis (45), so these 411 
observations are independent. We find that the GEOS-FP 10m wind speed compares 412 
well with the airport measurements in both daytime and nighttime (fig. S8), with 413 
mean biases of less than 6% in the mean wind speed. We conclude that errors in the 414 
model wind fields are unlikely to be a major source of error in the inversion.   415 

We introduced a regional model bias term in monthly inversions to correct for 416 
regional background biases in simulated methane concentrations, which result mainly 417 
from imperfect boundary conditions. To check our estimate for this regional bias 418 
term, we sample the model simulation to compare with independent observations, 419 
i.e., surface measurements at the Mauna Loa Observatory (MLO, a Pacific free 420 
tropospheric site upwind of the North American continent) (46), tower measurements 421 
at Moody, Texas (WKT) (47), and aircraft measurements offshore Corpus Christi, 422 
Texas (TGC) (48). The latter two sites are geographically much closer to the Permian 423 
Basin (~ 400 km from WKT and ~ 700 km from TGC) than MLO, but can be 424 
affected by local emissions that are not optimized in our inversion. Our results show 425 
that the model simulation, when corrected with monthly regional model biases 426 
(derived from monthly inversions over the Permian Basin), is able to capture the 427 
observed monthly variation in methane concentrations, notably the sharp increase 428 
from August to October 2018 in MLO and WKT observations (fig. S9), supporting 429 
that it is necessary to optimize the regional model bias in the inversion. Better 430 
agreement is observed at MLO and TGC compared to WKT (fig. S9), likely because 431 
WKT is located closer to local sources that are not fully optimized in the inversion. 432 
Overall, majority of the differences between the prior simulation and TROPOMI 433 
observations can be explained by the regional model biases, except for the mismatch 434 
in the vicinity of the Permian Basin (fig. S2). We further perform a sensitivity 435 
inversion with a varied spatial domain (Bg_Large). Compared to the base inversion, 436 
Bg_Large results in a lower regional methane background (by 3 ppbv on average) 437 
and a higher methane emission flux (3.4 Tg a-1) (table S2 and fig. S5), reflecting the 438 
error correlation between regional methane biases and methane emissions.    439 

In addition, we note that the inversion cannot fully explain the methane enhancement 440 
extending outside the Delaware Basin in the northwest direction (near 33°N, 105°W), 441 
although the inversion overall substantially improves the agreement between 442 
observations and model simulations (fig. S2). While our investigations do not 443 
attribute an obvious source of emissions causing the northwestern enhancement 444 
(whether oil/gas or other sources), the basin-level O/G emission estimates presented 445 
here are robust if this enhancement is caused by non-O/G sources, but are 446 
conservative if it is caused by O/G sources. 447 

 448 



Science Advances                                               Manuscript Template                                                                           Page 11 
of 39 
 

Emission inventory based on bottom-up information 449 

We create a bottom-up methane emission estimate (EIBU) for the study domain 450 
starting from the gridded version of the EPA anthropogenic greenhouse gas emission 451 
inventory for 2012 (49). Maasakkers et al. (49) developed a procedure to spatially 452 
and temporally allocate the national sectorial methane emissions reported in the U.S. 453 
Inventory of Greenhouse Gas Emissions and Sinks (GHGI) by U.S. EPA on a 0.1° × 454 
0.1° grid, using various databases at the state, county, local, and point source level. 455 
The emission inventory includes methane emissions from agriculture, coal mining, 456 
natural gas systems, petroleum (oil) systems, waste, and other minor anthropogenic 457 
sources.  458 

To reflect the intensifying exploitation activity in recent years in the Permian Basin, 459 
we then make an extrapolation of the methane emissions from the oil and gas 460 
production sector, using 2018 Enverus Drillinginfo data on well count, well 461 
completion, and production (50). We further scale the sub-sectorial production 462 
emissions using the ratio between the latest GHGI (22) and the GHGI that 463 
Maasakkers et al. (49) was based on (51) for 2013 emissions, to account for the 464 
changes in the national average emission factors. The updates result in total methane 465 
emissions of 1.2 Tg a-1 in the Permian Basin (blue box in Figure 5A), with 1.0 Tg a-1 466 
coming from O/G-related emissions and the remainder mainly from agriculture. We 467 
use this updated gridded emission inventory (EIBU) as the prior emission estimate for 468 
the inversion. The resulting emissions inventory dataset (EIBU inventory) is publicly 469 
available for our study region encompassing the entire Permian Basin 470 
(https://doi.org/10.7910/DVN/HH4EUM). 471 

Emission inventory based on site-level emission measurements 472 

An alternative prior estimation of methane emissions is obtained by extrapolating 473 
ground-based methane emission measurements from a limited sample of oil and gas 474 
production sites in the Permian Basin (primarily in the New Mexico portion of the 475 
basin) during July and August 2018 (52). The measurements found a wide range of 476 
site-level emission rates, which appear to be associated with the complexity of 477 
infrastructure, and were classified into emission rates for simple (with only wellheads 478 
and/or pump jacks) vs. complex sites (also with storage tanks and/or compressors). 479 
Extrapolating these site-level emission rates to the entire Permian gave a basin-level 480 
methane emission rate of 2.3 Tg a-1from O/G production. Additional emissions from 481 
compressor stations and processing plants are estimated to be 0.22 Tg a-1 and 0.14 Tg 482 
a-1, respectively, using activity data from Enverus Drillinginfo’s midstream 483 
infrastructure dataset, facility-level emission factors from literature (53, 54), and 484 
blowdown event emission factors from GHGI (22). We then disaggregate the basin-485 
level O/G-related emissions to a 0.1° × 0.1° grid by the spatial distribution of gas 486 
production (Figure 2D). To complete the inventory, non-O/G anthropogenic methane 487 
emissions (0.2 Tg a-1) are taken from EIBU. This emission inventory (EIME), based 488 
primarily on extrapolation of limited site-level measurements, provides an alternative 489 
prior estimate for the inversion and is used to test the sensitivity of the results to the 490 
choice of prior information (fig. S3). See text S2 for detailed information regarding 491 
the site-level measurements and the extrapolation procedure. See text S2 for detailed 492 
information regarding the site-level measurements and the extrapolation procedure. 493 
The resulting emissions inventory dataset (EIME inventory) is publicly available for 494 
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our study region encompassing the entire Permian Basin 495 
(https://doi.org/10.7910/DVN/HH4EUM). 496 
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 759 

 760 
Fig. 1. TROPOMI satellite data derived elevation-corrected column methane 761 

mixing ratio for (A) the conterminous U.S. and (B) the Permian Basin 762 
containing the Delaware and the Midland sub-basins. White shading 763 
represents missing data. Purple boundary in A indicates the study domain 764 
encompassing the Permian Basin. Methane averages are computed from 765 
monthly means of TROPOMI measurements during May 2018 and March 766 
2019. 767 

 768 
  769 



Science Advances                                               Manuscript Template                                                                           Page 19 
of 39 
 

 770 

 771 
Fig. 2. Oil and gas production in the Permian Basin. A and C show time series of 772 

annual oil and natural gas production in black and the corresponding fractions 773 
of total U.S. production in blue (data from the Drilling Productivity Report by 774 
EIA (13)). B and D show the spatial distribution of oil and gas production for 775 
2018 (data from Enverus Drillinginfo (50)). Oil production includes both 776 
crude and condensate production. Gas production represents gross (before 777 
processing) gas production.  778 

 779 
  780 
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 781 

 782 
Fig. 3. Satellite observations of (A) gas flaring radiant heat and (B) NO2 783 

tropospheric column density over the Permian Basin. The flaring radiant 784 
heat is the annual average of 2018 measured by the VIIRS satellite 785 
instrument, and NO2 tropospheric column density is the 3-month average 786 
(June, July, and August of 2018) measured by the TROPOMI instrument, 787 
indicating co-located hotspots over the Delaware and Midland sub-basins. 788 

 789 
 790 

  791 
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 792 
Fig. 4. Methane emission quantification for the Permian Basin. (A) Annual 793 

methane emissions from the Permian Basin from two prior emission 794 
inventories (EIBU and EIME), and TROPOMI satellite data based atmospheric 795 
inversion and a mass balance method. The break-down for Delaware, 796 
Midland, and non-O/G sources are shown in pink, red, and white for EIBU, 797 
EIME, and atmospheric inversion. The estimate for the Permian Basin is 798 
compared with total emissions from 11 U.S. basins reported in literature (7, 799 
24, 25) (table S1). (B) Leakage rates for the Permian Basin and two sub-800 
basins, in comparison with the average leakage reported for the entire U.S. (7) 801 
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 803 

 804 

Fig. 5. Spatial distribution of methane emission rates in the Permian Basin. (A) 805 
Bottom-up emission inventory EIBU extrapolated from EPA greenhouse gas 806 
inventory data (prior). (B) TROPOMI observation derived emissions using 807 
Bayesian atmospheric inverse modeling (posterior). The prior and posterior 808 
basin-total emissions, indicated on top of the figure, are computed over the 809 
area enclosed by the solid blue boundary, with contributions from two sub-810 
basins, the Delaware (left of the dashed line) and Midland (right of the dashed 811 
line). 812 
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Supplementary Materials 815 

Supplementary Text 816 

Text S1: Methods for estimating gas flaring volume 817 

We use the nighttime fire and flare data observed by the Visible Infrared Imaging 818 
Radiometer Suite (VIIRS) instrument onboard the Suomi National Polar-Orbiting 819 
Partnership satellite to support our analysis 820 
(https://eogdata.mines.edu/download_viirs_fire.html; data access: August 1, 2019). 821 
The product Nightfire V2.1 (CLASS) is available for the period from 2012 to 2017, 822 
while the product Nightfire V3.1 (GRAVITE) is available for the period starting 823 
2018. We select the data with retrieved flame temperature between 1400–2500 K 824 
within the study domain. Combustion in this temperature range is usually associated 825 
with gas flaring. The spatial distribution of the flaring radiant heat in Permian is 826 
presented in Figure 3 and the evolution of the flaring radiant heat is presented in fig. 827 
S1.  828 

We also estimate the gas flaring volume in Permian between May 2018 and March 829 
2019 following an empirical relationship with the radiant heat proposed by Elvidge et 830 
al. (55): 831 

𝑉 = 0.0274	𝐻F.G 832 
where H is the VIIRS observed radiant heat in MW and V is the gas flaring rate in 833 
109 m3 a-1. The average and the standard deviation of the flaring rate during the study 834 
period is computed with daily basin-level flaring rates aggregated from individual 835 
detected flares. We estimate a flaring rate of 5.9±1.2 billion m3 a-1 during May 2018 836 
and March 2019. In comparison, the operator self-reported venting and flaring in the 837 
Permian Basin is 4.5 billion m3 a-1 for 2018, according to the New Mexico Oil 838 
Conservation Division (www.emnrd.state.nm.us/OCD/statistics.html) and the Texas 839 
Railroad Commission (www.rrc.state.tx.us/oil-gas/research-and-statistics/production-840 
data/). Previous assessments show that operator self-reported flaring data are 841 
consistently lower than satellite-based observations (15).  842 
  843 
 844 
We can further compute the mass of methane contained in the flared gas (M) as 845 

𝑀 = 𝑚JKLγ
𝑉
𝜐
	 846 

where 𝜐 is 0.0224 m3 mol-1 under STP conditions, mCH4 is 16 g mol-1, and γ is the 847 
fraction of methane in natural gas (~ 80% for the Permian Basin according to EPA 848 
Oil and Gas Emissions Estimation Tool Version 1.5). Methane emissions from gas 849 
flaring can then be computed as (1 − 𝜖)𝑀, and methane converted to CO2 during 850 
flaring as 𝜖𝑀, where 𝜖 is the flaring combustion efficiency. We thus estimate that 851 
3.4±0.8 methane Tg a-1 is sent to flaring. Assuming a flaring efficiency between 852 
95%-98%, this indicates direct methane emissions of 0.07-0.17 Tg a-1 from gas 853 
flaring, less than 6% of the total methane emission estimate based on TROPOMI 854 
data. 3.2-3.3 Tg a-1 methane is converted to CO2 during flaring.  855 
 856 
As a form of background information, there are 154,540 active wells with 6,555 new 857 
wells (< 1 year old) in the Permian Basin during the study period (May 2018 – March 858 
2019), according to Enverus Drillinginfo (50). Here, active wells are defined as wells 859 
that either reported their oil/gas production for at least six months during the study 860 
period or reported non-zero oil/gas production at the end of the study period (March 861 
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2019). While information regarding permits in the New Mexico portion of the 862 
Permian Basin is unavailable, we estimate a total of 3,364 venting and flaring permits 863 
are effective for the Texas portion of the basin during the study period, based on the 864 
data from the Texas Railroad Commission. 865 
 866 

 867 
  868 
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 869 
Text S2: Site-level emission measurements and extrapolation to the Permian 870 
Basin 871 

We provide here details of recent ground-based measurements and their extrapolation 872 
that were used to construct an alternative measurement-based bottom-up inventory 873 
for the Permian Basin, as an input to the atmospheric inversion modeling. The 874 
methodology and results were made publicly available in April 2019 via 875 
Environmental Defense Fund’s New Mexico oil and gas pollution study (52). The 876 
resulting emission inventory dataset (EIME inventory) is publicly available for our 877 
study region encompassing the entire Permian Basin (DOI: 878 
10.7910/DVN/HH4EUM).  879 

Here, we provide a summary of the measurements, methodology and results. 880 
Ground-based site-level methane emission measurements at 93 oil and gas 881 
production sites in the Permian Basin were performed in July and August 2018 with 882 
a stationary downwind plume measurement technique (OTM-33A) (52), in which 883 
methane concentration measurements were taken downwind of target sites at 0.5 Hz 884 
using a Picarro cavity-ring down spectrometer (Model G2204).  OTM-33A is a well-885 
established emission rate quantification method that utilizes stationary downwind 886 
measurements coupled with Gaussian plume dispersion modeling to estimate site-887 
level methane leak rates. Previous controlled release tests indicated a 95% confidence 888 
interval of +/-56% on mean site-level emissions quantified using the OTM-33A 889 
methodology (with a -10% bias) (56).  890 

The sampling was carried out predominantly in the New Mexico portion of the 891 
Permian Basin, following a stratified random sampling approach to account for the 892 
wide diversity of well age within the oil producing fields. Final site selection at a 893 
particular field was determined by local meteorology on the day of measurements as 894 
well as access to public roads downwind of target sites. A FLIR optical gas-imaging 895 
camera is used to identify major emission sources such as storage tanks and to 896 
facilitate positioning of the vehicle within the plume. 897 

In this study, sites were recorded as below the detection limit (BDL) if no clear 898 
plume was detected downwind. The BDL was estimated at 0.04 kg/h based on 899 
previous work (56). In total, 52 sites were reported to have BDL emissions while 41 900 
sites had emissions that were above the detection limit. The detectability of emissions 901 
from a site are found to be closely associated with the complexity of infrastructure. 902 
Emissions were below the detection limit (0.04 kg/h/site) for over 90% of “simple” 903 
sites (with only wellheads and/or pump jacks), but were detectable for most (78%) 904 
“complex” sites (also with storage tanks and/or compressors). We determine the site-905 
level emission factor for “simple” sites to be 0.04 kg/h/site and that for “complex” 906 
sites to be 5.2 kg/h/site. For the latter, a lower bound estimate following the 907 
procedure described in Zavala-Araiza et al. (57) (5.2–79 kg CH4/h/site) is used here 908 
for a conservatively low estimate.     909 

To extrapolate to basin-level emissions based on the above measurements, we need 910 
to estimate the number of “simple” vs. “complex” sites in Permian. We used satellite 911 
imagery data from Google Maps to perform manual classification (“simple”, 912 
“complex”, or “unknown”) of 25,000 well sites in the New Mexico portion of the 913 
Delaware Basin. Human classification of well site images was achieved via a 914 
crowdsourcing marketplace—Amazon Mechanical Turk (https://www.mturk.com/). 915 
Depending on the observed equipment on site, each image representing a well site 916 
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location was manually classified by five workers as either a “simple” site, a 917 
“complex” site, or a site of “unknown” configuration. A site’s final classification was 918 
determined based on at least a 60% agreement among the workers. On average, 33% 919 
of the sites were classified as “complex” sites and 58% were classified as “simple” 920 
sites, with the remainder (8.6%) being sites of “unknown” configuration. We assume 921 
this distribution for the New Mexico portion of the Delaware Basin applies to the 922 
whole Permian Basin and count the “unknown” category as “simple”. We therefore 923 
estimate that the numbers for “simple” and “complex” sites are 97,000 and 48,600, 924 
respectively. Combining site classifications with corresponding site-level emission 925 
factors leads to an estimate of 2.3 Tg a-1 for methane emissions from O/G production 926 
in the Permian Basin. 927 

  928 
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Text S3 Mass balance method for emission quantification 929 

As an independent comparison of our inverse modeling results, we apply the mass 930 
balance method of Buchwitz et al. (23) to derive the average methane emission rate 931 
over the Permian Basin (30-34 °N, 101-105 °W). This data-driven approach does not 932 
require prior emissions and atmospheric transport model, and therefore is a fast 933 
algorithm, compared to atmospheric inversion. With large amount of high resolution 934 
observations delivered by satellite instruments such as TROPOMI, the method has 935 
potential as a quick screening and assessment tool for quantifying regional annual 936 
methane emissions.  937 

Here, we apply the method to the elevation corrected methane column XCH$%  data 938 
from May 2018 – March 2019 regridded to 0.2° × 0.2° (Figure 1). The emission rate 939 
(Q, Tg yr-1) is computed by applying a conversion factor (CF) to the XCH$%  940 
enhancement (∆XCH$% , ppbv, computed as mean XCH$%  in the source region minus 941 
mean XCH$%  in the surrounding background) as follows (23): 942 

 943 

where L is the effective length of the source area (computed as square root of the 944 
source area, 375 km) through which wind of effective speed V (17 km hr-1) ventilates 945 
the air parcel carrying emitted methane, 𝑀QRS is the ratio of average surface pressure 946 
in the region (898.32 hPa for Permian) and standard surface pressure of 1013.25 hPa, 947 
M is a constant to convert mole fraction to mass change per area (5.345 kg CH4 km-2 948 
ppb-1) in standard atmospheric conditions, and C is a dimensionless factor chosen to 949 
be 2.0, derived by Buchwitz et al. (23), based on the concentration difference of the 950 
air parcel before and after entering the source area. The surrounding background is 951 
defined as a rectangular box centered at the Permian Basin. We vary the width and 952 
length of the surrounding background from 8 to 24 degrees at a 2-degree interval. 953 
Wind speed V is taken from the average horizontal boundary layer winds over the 954 
source region from ECMWF ERA5 data at 20:00 UTC, which is close to TROPOMI 955 
overpass time over Permian basin. Using the mass balance method, we estimate an 956 
annual average methane emission rate of 3.2 Tg a-1 from the Permian Basin. 957 

The uncertainty of the method (σ%U%) is computed as 𝜎WXJKLY 	
Z + 𝜎J[Z  to account for 958 

contributions from both ∆XCH$%  and CF. The uncertainty due to ∆XCH$%  (𝜎WXJKLY 	), 959 

dominated by the variations in the background XCH$% , is estimated by varying the size 960 
of surrounding background region. The uncertainty due to CF (𝜎J[), primarily 961 
contributed by the uncertainty in wind speed, is computed using the empirical 962 
equation derived in Buchwitz et al. (23) We find σ%U% to be 2.0 Tg a-1 (𝜎WXJKLY 	= 0.5 963 

Tg a-1 and 𝜎J[ = 1.9 Tg a-1) in this work.  964 

 965 

 966 
 967 
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 968 
Text S4 Current status of regulation in the Permian Basin 969 

Oil and gas production on federal lands occur only on the New Mexico portion of the 970 
Permian Basin. These lands accounted for 9.6% (398 Bcf) and 8.9% (18 Bcf) of total 971 
Permian gas production (https://www.enverus.com/) and gas flaring 972 
(https://eogdata.mines.edu/download_global_flare.html), respectively. With the 973 
rescinding of the gas capture and fugitive emissions requirements in the BLM’s 2016 974 
Methane Waste Prevention Rule, Permian Basin operators with assets on both federal 975 
and state lands are now required to meet the state standards only. Both New Mexico 976 
and Texas do not have associated gas capture targets and both states permit 977 
associated gas flaring in the Permian Basin. Additionally, both states currently do not 978 
directly regulate oil and gas methane emissions.  979 

 980 

In 2016, the Bureau of Land Management’s Methane Waste Prevention Rule 981 
(https://www.regulations.gov/document?D=BLM-2016-0001-9126) imposed limits 982 
on associated gas venting, flaring and fugitive leaks from new and existing sites 983 
operated on federal lands. The BLM’s 2018 revision 984 
(https://www.govinfo.gov/content/pkg/FR-2018-09-28/pdf/2018-20689.pdf) of the 985 
2016 rule rescinded these requirements, arguing that these rules were unnecessary 986 
because the EPA had analogous requirements for fugitive leaks, and venting and 987 
flaring are regulated under state requirements. However, the EPA fugitive emissions 988 
requirements are less stringent—they focus only on new or modified facilities 989 
commissioned in September 2015 and later and do not address gas waste from other 990 
existing sites. Furthermore, the EPA recently proposed to revise these requirements 991 
(https://www.federalregister.gov/documents/2018/10/15/2018-20961/oil-and-natural-992 
gas-sector-emission-standards-for-new-reconstructed-and-modified-sources), 993 
loosening the leak detection and repair frequency and allowing more time to perform 994 
repairs of detected leaks.  Thus, the vast majority of Permian operations (i.e. existing 995 
sites) on both federal and state lands are now required to meet the state standards 996 
only.  997 

Both New Mexico and Texas do not have associated gas capture requirements 998 
analogous to the requirements in the 2016 BLM rule, and both states currently permit 999 
associated gas flaring in the Permian Basin. The Texas Railroad Commission’s 1000 
Statewide Rule 32 1001 
(https://texreg.sos.state.tx.us/public/readtac$ext.TacPage?sl=R&app=9&p_dir=&p_rl1002 
oc=&p_tloc=&p_ploc=&pg=1&p_tac=&ti=16&pt=1&ch=3&rl=32) grants 1003 
administrative flaring permits that can be renewed for 180 days. Operators can apply 1004 
for extension to flare beyond the first 180 days and provide additional information on 1005 
progress made “toward establishing the necessary infrastructure to produce gas rather 1006 
than flare it.” These extensions are routinely granted, primarily because “the operator 1007 
is waiting for pipeline construction scheduled to be completed by a specified date.” 1008 
Similarly, The New Mexico Administrative Code 19.15.18.12A 1009 
(http://164.64.110.134/parts/title19/19.015.0018.html) permits venting and flaring of 1010 
casing-head gas in unlimited quantities within the first 60 days following completion. 1011 
Exceptions may be granted beyond the first 60 days when venting/flaring appears 1012 
“reasonably necessary to protect correlative rights, prevent waste or prevent undue 1013 
hardships on the applicant.” 1014 

  1015 
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 1016 

Supplementary figures 1017 

 1018 

Fig. S1 Annual mean gas flaring radiant heat over the Permian Basin observed 1019 
by VIIRS from 2012 to 2018. Error bars represent the standard deviation of monthly 1020 
variations. The blue shading represents the Midland Basin and the green shading the 1021 
Delaware Basin. 1022 

  1023 
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 1024 

 1025 

Fig. S2 Observed and simulated XCH4 over the Permian Basin. The top panels 1026 
show TROPOMI observations, GEOS-Chem prior simulation, and GEOS-Chem 1027 
posterior simulation respectively. The bottom panels show the difference between 1028 
simulations (prior simulation, prior simulation with regional biases corrected, and 1029 
posterior simulation) and observations. Data are averaged from May 2018 to March 1030 
2019. 1031 
  1032 
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 1033 

 1034 

 1035 

Fig. S3 Spatial distribution of methane emission rates in the Permian Basin in 1036 
alternative prior emission inventories (A, C, E, G) and the corresponding 1037 
posterior estimates (B, D, F, H). A, B are for EIME, C, D for EIwell, E, F for EIgas, 1038 
and G, H for EIoil. The solid blue box encloses the Permian Basin with the two sub-1039 
basins to the left (the Delaware) and the right (the Midland) of the dashed line.  1040 



Science Advances                                               Manuscript Template                                                                           Page 32 
of 39 
 

 1041 

Fig. S4 Spatial correlation between the posterior methane emission rates and 1042 
O/G production activities for each grid cell. Data for well count, oil production, 1043 
and gas production are normalized and expressed in %.   1044 

  1045 
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 1046 

 1047 

Fig. S5 Monthly methane emission rates estimated by the base and sensitivity 1048 
inversions (top) and analytical posterior error (bottom). The top panel shows the 1049 
monthly and mean basin-level methane emission estimates by the base and sensitivity 1050 
inversions (table S2). Blue and red dashed lines indicate basin-level emissions 1051 
estimated by EIBU and EIME, respectively. The bottom panel shows monthly count of 1052 
successful retrievals used in the base inversion (green), analytical posterior errors for 1053 
the basin-level methane emissions (black), and corresponding degrees-of-freedom for 1054 
signals (DOFS) (blue). 1055 

  1056 
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 1057 

 1058 
Fig. S6 Monthly natural gas production and price in the Permian Basin. Top: 1059 
natural gas production in the Permian Basin. Bottom: monthly mean natural gas spot 1060 
price between Waha (in the Permian Basin) and Henry Hub (benchmark of the North 1061 
America natural gas market). Note that the price differences (Waha – Henry Hub) are 1062 
negative, meaning that natural gas is traded below the Henry Hub benchmark within 1063 
the Permian Basin.  1064 

  1065 
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 1066 

 1067 

 1068 
Fig. S7 TROPOMI XCH4 observations over the conterminous U.S. (A) Average 1069 
column methane mixing ratio (XCH4) over the conterminous U.S. during the study 1070 
period. The 11-month average is derived from monthly mean XCH4 from TROPOMI. 1071 
(B) Number of days with successful retrievals on the 0.2°×0.2° grid from May 2018 1072 
to March 2019. 1073 

  1074 
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 1075 
 1076 

 1077 

Fig. S8 Evaluation of GEOS-FP wind speed in daytime (left) and nighttime 1078 
(right). Data are from May 2018 to March 2019. Surface measurements at the 1079 
Midland Airport (MAF) in the Permian Basin are obtained from MesoWest 1080 
(mesowest.utah.edu). 1081 
  1082 

  1083 
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 1084 
Fig. S9 Regional model biases inferred from the TROPOMI inversion and 1085 
evaluation with independent observations. (A) monthly regional model biases for 1086 
the simulated methane column (XCH4) from the base inversion. (B-D) Evaluation 1087 
with surface measurements at MLO (B), tower measurements at WKT (C), and 1088 
aircraft vertical profile measurements ~ 250–8000 m at TGC (D). The bias corrected 1089 
model results (blue) are computed as the sum of original model results (red) and 1090 
model biases inferred from the inversion (regional model biases derived from our 1091 
inversion times a factor of 1.25 to convert the column bias to the free tropospheric 1092 
bias). We show monthly averages for MLO and WKT, and flight averages above and 1093 
below 4 km altitude for TGC. This comparison suggests that the regional model bias 1094 
term introduced in the inversion is effective for correcting background biases 1095 
resulting mainly from imperfect boundary conditions. 1096 
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 1100 

Table S1. Estimates of O/G-related methane emissions reported in previous aircraft-1101 
based studies for 11 U.S. O/G producing basins. a 1102 

 Ref. Date Sampled 
(Month/year) 

NG 
production 
(109 m3 a-1) 

CH4 
fraction in 

NG 
(%) 

O/G-
related 

emissions 
(Tg a-1) 

Production 
normalized 

emission rate 
(%) 

Haynesville (26) 6/2013 80 86 0.63 1.3 
Barnett (27) 3 & 10/2013 61 89 0.53 1.4 
NE PA (28) 5/2015 60 95 0.16 0.4 
NE PA (26) 7/2013 N/A 95 0.11 0.3 
San Juan (12) 4/2015 29 83 0.50 3.0 
Fayetteville (29) 10/2015 26 97 0.24 1.4 
Fayetteville (26) 7/2013 N/A 97 0.31 1.9 
Bakken (30) 5/2014 20 47 0.24 3.7 
Uinta (31) 2/2012 12 89 0.48 6.6 
Denver Basin (32) 5/2012 10 79 0.17 3.1 
West Arkoma (26) 7/2013 4 96 0.23 9.1 
Bakken (24) 4/2015 13 47 0.25 5.4 
Barnett (24) 4/2015 44 87 0.40 1.5 
Denver Basin (24) 3/2015 14 77 0.16 2.1 
Eagle Ford b 

west 
east 

(24) 4/2015 56 
32 
24 

N/A 
77 
68 

0.73 
0.36 
0.37 

2.5 
2.0 
3.2 

Haynesville (24) 4/2015 54 90 0.37 1.0 
SW PA (25) 8 & 9/2015 29 88 0.19 1.1 
11-basin sum c   322 N/A 3.71 1.9 
Permian This 

study 
5/2018-3/2019 128 80 2.7 3.7 

a Data are taken from a summary by Alvarez et al. (7) except for those from Peischl et al. 1103 
(24) and Ren et al. (25).  1104 

b Emissions from Eagle Ford are reported separately as west and east sub-basins (24), 1105 
based on which we compute the data for the entire basin. 1106 

c 11-basin sum is computed with latest measurements if multiple studies exist for a 1107 
specific basin. Therefore, shaded rows are excluded in calculating the 11-basin sum. 1108 

 1109 

 1110 

 1111 

 1112 

 1113 

 1114 

 1115 

 1116 
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 1117 

Table S2. Total basin-level methane emission estimates from an ensemble of 1118 
sensitivity inversions perturbing a variety of inversion parameters. 1119 

 Inversion  Basin methane 
emissions 
(Tg a-1) 

 Base inversion a 2.9 
Sensitivity inversions perturbing prior emissions b 

PI_EIME EIME as prior emissions 3.2 
PI_EIoil EIoil as prior emissions 2.7 
PI_EIgas EIgas as prior emissions 2.7 
PI_EIwell EIwell as prior emissions 2.9 

Sensitivity inversions perturbing the size of spatial domain 

Bg_Large 27°–36°N, 98°–108° W 3.4 

Sensitivity inversions perturbing error covariance specifications 

PE×2 Double prior error 3.2 

PE×0.5 Halve prior error 2.5 
OE_Cor Specify observational error 

correlations c 
2.4 

a Base inversion is performed over a domain in 29°–34°N, 100°–106° W and uses 1120 
EIBU as prior information. Both SO and SA are taken to be diagonal. Prior errors are 1121 
specified as the absolute difference between EIBU and EIME. Observational errors are 1122 
specified following the residual error method (43). 1123 
b Spatial distributions of these prior emission inventories and corresponding posterior 1124 
estimates are shown in fig. S3. 1125 
c SO is specified following Cusworth et al. (44) by assuming 4 ppbv model errors 1126 
with a spatial correlation length of 40 km and independent instrument errors.  1127 
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